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A Method Extending the Boundary
Condition for Analyzing Guided Modes of
Dielectric Waveguides of Arbitrary
Cross-Sectional Shape

NAGAYOSHI MORITA, MEMBER, IEEE

A bstract — A method based on the extended boundary condition method
is presented for analyzing guided modes of dielectric waveguides of arbi-
trary cross-sectional shape. Numerical integration needed in this method is
only over the boundary periphery line of the waveguide. Nevertheless, it is
applicable to the waveguides with any refractive index difference between
core and cladding ranging from negligibly small to considerably large
difference, as well as to certain types of waveguide with inhomogeneous
core. Approximate formulas for the case of weakly guiding are also
derivable from the general basic set of equations presented. Numerical
examples are given to verify the usefulness and accuracy of this method.

I. INTRODUCTION

ITH THE increasing importance of the role of the
Wopen waveguide as the optical to millimeter-wave or
microwave guiding structure, a variety of dielectric wave-
guides with circular and noncircular cross-sectional shapes
have appeared and been proposed. In order to investigate
the propagation characteristics of guided modes of those
waveguides, various types of analysis method have been
proposed and used. Typical methods of these are point-
matching [1}-[4], mode-matching [S], the method using
telegraphist’s equations [7], [8], and others [9], as applicable
to the homogeneous-core guides, and the method of mo-
ments [10], variational method [11]-[13], and finite-element
method [14], as applicable also to the inhomogeneous-core
guides. (The analyses peculiar to the radially inhomoge-
neous optical fiber are excluded here.)

All these methods, however, seem to have one or some of
drawbacks, such as: 1) inadequate in accuracy, particu-
larly, near cutoff; 2) only usable for some particular cross-
sectional shape; 3) only effective to the case of small
refractive index difference between core and cladding; 4)
require numerical integrations over a cross section; 5) need
to take a number of unknowns over a cross-sectional area,
etc.

This paper presents a quite general and efficient method
based on the extended boundary condition method [15],
[16]. This method does not only surmount the aforemen-
tioned drawbacks but also has the additional advantage
such that the fields in the exterior homogeneous region
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need not be used (at least directly) and pertinent ap-
proximations with very high accuracy can be derived
according to the usable conditions.

In order to demonstrate the usefulness and accuracy of
the present method, the inhomogeneous circular wave-
guide, the step-index circular waveguide, and the rectangu-
lar waveguide are treated with some typical numerical
examples for them.

II. GENERAL EQUATIONS

Consider the modes propagating in the z-direction with
the propagation constant 8. All electromagnetic fields of
modes are supposed to have the common factor exp ( jwt —
JBz) which is eliminated throughout the paper.

Since the problem of gunided modes of a dielectric wave-
guide has the analogical property with the problem of
scattering of the obliquely incident wave by the same
dielectric cylinder as the waveguide, we could start from
the integral representation of field provided for such
scattering problems. Thus, by replacing cos ¢ with —8/k
in the first equation of [17, eq. (27)] and using (3) of the
same reference, we obtain the following electric field
expression in the exterior region:

d
£, == 52 [k )+ 5 X BYX(9 4 8i)
(i X H) (944 J88)) (7 i) |9, !
(1)
where

V,=V—id/iz
\l’e:KO(heR)

he= VB -k @

and where k is the wavenumber of the exterior region of
the waveguide, and R is the distance between the observa-
tion point and the integration point projected on a z-
constant plane. In the derivation of (1), the relation

HP (= jz)=(j2/7)K(2) 3)
is used. Other notations and definitions are as follows (see
Fig. 1): i.e., C denotes the boundary line between interior
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Fig. 1. Cross section of dielectric waveguide and coordinate systems.

(G) and exterior (G) regions in a cross section; # and v are
the coordinates normal to C and along C, respectively, at a
point on C; i, is a unit vector directed along the g-direc-
tion, where a stands for some coordinates; a is the angle
between i, and i,; and W is the wave impedance in region
G. The prime refers to the derivative with respect to the
total argument of the indicated function when used on
functions, or otherwise refers to the coordinate of the
integration point, and the subscript e represents the exte-
rior region.
Using the identity

(4)

i,=i,cosa’—i,sina’

the x-component of (1) becomes

—_ v E Ey 3
E, = P c[kH sina’+ Bcosa’ W jsina'—= W oW
E, 3 1 9 .
f°°S“WW_E(HZW_JBHv')
’ a 4 a !
-(cos o av,)}xpedv. (5)

Note that only tangential components appear in the in-
tegrand. Thus, we can replace, using boundary conditions
all fields E,, H,, E,, and H, by the interior fields E,,, H,_,

E,, and Hw, respectlvely, where the subscript i represents

the interior region. From Maxwell’s equations, we get

i OF 0E
H J ( wo_ m)

(6)

iz kW an v
0H, . k2
90 + JBHIU'.: ]kWEm’ (7)

where « is the refractive index in G relative to that in G.
Removing magnetic fields from (5) by use of integration by
parts, together with (6) and (7), and then removing E;, by
use of the equation (see Appendix)

BE =2 (GeEu+ GeEa) T e e ®)
(5) reduces to
Eexz“‘f[aaEn ~ gy |
+L/[(K —1)E, ( 'ai’ %)
- %cos a’( E,n,% + Ew,% )] ¥, dv’ ()

or
Eex:—%fc[afrii"% E, 24’ ]d'
+ -21;.[6{(;9 —1)(E, cosa’+ E,, sina’) g:f
—%cosa’(E,x ;"‘, +E, %‘)zﬁ] a'.  (10)

Following the similar steps, the expression for E,, reduces

to

B 1 '()E,y, 0y, ,
F;y_ E c[ on’ '4’:3 Eiy’—é;l—l dvo

+ Lf[(:cz —1)(E, coso’+ E,  sina’) 0

27 ay’

2., aK oK ,
_;sma(E,x o "By 5y )%] dv’. (11)
Equations (10) and (11) are the integral expressions of E,,
and E,, for the case where the observation point is in the
extenor region (PE G). On the other hand, if the observa-
tion point is placed in the interior region (PEG), both
expressions become zero due to the extended boundary
condition, which means

the right-hand sides of (10) and (11)=0, P€EG.

(12)
Next, use is made in (12) of the addition theorem of the
modified Bessel function
o0

Y= 2 K, (h o) (h.p)cosi(6'—8),
=0

’

p<p

(13)
where €,=2 unless /=0, in which case ¢,=1. Finally, we
have the following two basic equations:

0E,,. 3., )
_/c Ay~ B g ) ("~ I)(E, o cosa
e e g X
+E sma) ~+ — cosa(E,x, % iy 8y’)}
K (h p")cos i(0'— 0) dv'= 1=0,1,2,--- (14)
JFE, . 3
1y _ 9 N\ 2_ ,
/;{( o’ E, an,) (k2 —1)(E, cosa
N K K
t+E, sma)—-—~+—sma( i 5R7 =+ ,.y,ay,)}
-K,(h,p")cosl(6’— 8)dv’' =0, 1=0,1,2,--- (15)

which determine the propagation constants B8 and the
transverse field distributions E;, and E,, of guided modes.
All other interior field components can be determined from
E, and E,,, and the electric fields of the exterior region
could be obtamed from (10) and (11).

Use of the principle of (12) and the identity (13) is the
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essential procedure of the extended boundary condition (or
null-field, or T-matrix) method [16]. Equations (14) and
(15) are not necessarily correct analytically, because of the
use of (13); for example, they may not work for a guide
with an eccentric cross-sectional shape far different from
circle, like strongly concave. However, as long as we treat
the “ordinary” dielectric waveguides and we can use the
pertinent expressions for E,, and E, , (14) and (15) could
be considered to be the exact equations. Note that (14) and
(15) are applicable to the waveguides with the inhomoge-
neous core region as well as with the arbitrary cross-
sectional shape.

III. INHOMOGENEOUS CIRCULAR WAVEGUIDE

As a first example, let us consider a circular waveguide
whose refractive index distribution is given as

k*=x3{1-h(p)},
=1,

p<sa

(16)

It seems not so easy to get the exact field distributions in
the inhomogeneous region p < a. Fortunately, however, an
approximation is available for the case of weak inho-
mogeneity; according to this approximation, the electric
fields of HE and EH modes in p < g are neatly expressed
as [17]-{20]

p>a.

even HE,
E,,=AQ" Y(p){i,cos(n—1)0 —i sin(n—1)8}
odd HE,,,,
E,,= AQ" Y(p){i sin(n—1)8 +i,cos(n—1)6}
even EH,,,
E,, = A9"*Y(p){i cos(n+1)0+i,sin(n+1)8}
odd EH,,,
E,, = AQ""Y(p){i sin(n +1)8 —i,cos(n+1)6}

(17)

(18)

where the terms even and odd mean the symmetrical
property with respect to the x-axis, and n=>1 in general;
but the case of n =0 is special in that even EH,, tends to
TM,,, and odd EH,,, to TE,,,. The integer n used here
should not be confused with the coordinate # normal to a
point on C. A simple solution of 2("(p) in (17) and (18)
will be a solution of the differential equation

Lot non - om0
1)

with
x=1—B%/k%3 (20)

A method of solving (19) for general 4(p) is, for example,
described in [19].
The characteristic equations for HE,,, and EH,,,, modes

can be derived by substituting electric fields (17) and (18)
into (14) or (15). Both even and odd cases result in the
same equations except for the case n =0, from which case
TE and TM modes result

(n—1)r 2 K’ h
HEnm: Q (p)_K +1 . n—l( ep)
Q=1(p) 2 w_1(h.p)
1 dk _
(x —1)+de] =0, n=1
(21)
el |2 (e) 21, Kiyi(hep)
" QD (p) 2 K, 1(h.p)
n+1 1 dk
~ 34 (x —1)+de 0, n=1
(22)
10X Ki(h
TEOml Q (P)_ . 1( ep)] =0 (23)
Q(l)(p) Kl(hep) p=a
Qo Ki(h
T™,,,: [—(;)—(—Q-xlhe—iﬂ
2%(p) K(h.p)
2_
- £ 1+391‘-] =0. (24)
a kOp | _,

These approximate characteristic equations can present
solutions with almost the same level of accuracy as of [19],
in spite of their far simpler forms. Furthermore, it is quite
interesting to notice that the characteristic equations (21)—
(24) are just the same equations as those of [21] in which a
different approach is employed.

Next, we shall proceed to a simple numerical example.
Fig. 2 shows some of the dispersion curves obtained using
2D~ (24) for the case of quadratical inhomogeneity given
for

h(p)=d(p/a)’ (25)

in which case the solution of (19) can be written as

n 2 2
()= L _l(_&) m| £
2 (0)=(£) exp{ (E) 1|5 e
where
VZ—%{n—!-l—%sg(kzng—,Bz)}

s¢=a/(krgld)

and L{(-) is the Laguerre function. One of the abscissas ¥
is the normalized frequency kay2x(x, —1) . Examples for
three different values of d are shown in which the case
d =0 corresponds to a step-index fiber, while the case
d=0.015 corresponds to a fiber with smaller refractive
index in the core region near cladding than that in the

27)
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Fig. 2. Dispersion curves of quadratically inhomogeneous circular di-
electric waveguide. k, =1.01.

cladding. We can notice at a glance the marked effect of d
on widening the single-mode frequency region. Differences
among HE,,, TE;, and TM,; modes cannot be dis-
criminated on this graph. It is checked that each curve
perfectly agrees with that of the corresponding mode ob-
tained from the characteristic equation of [19].

Although the results of this section may not be neces-
sarily new, the equations given in this section shall be
found soon to be connected to and useful for the discus-
sions of the following sections.

IV. SteP-INDEX CIRCULAR WAVEGUIDE

In the case of the step-index circular waveguide, i.e.,
h(p)=0, the solution of (19) reduces to

Q"(p)=AJ,(h;p) (28)
where A4 is a constant and
h,= k2 —B2. (29)

Then, the characteristic equations corresponding to (21)-
(24) become

HE, - UlL,_(U) xk3+1
(U) 2
WK' I(W) 2
-1)=0, n=1 (30
n 1(w) 2 ( 0 ) ( )
EH, - Ul (U)  xk5+1
Jn+l(U) 2
WKy (W) _n+l,,
. 2 - k2—1)=0, n=1 (31)
K0 7 )
om L(U)  K(W)

9
and
o UJ,(U) WKO(W): ,(33)
" kg Ji(U) K(w)
where
U=ha W=h,a. (34)

1t will be worth mentioning that (32) and (33) are just the
rigorous characteristic equations of TEOm mode and TM,,,
mode, respectively (the case of /=0 in (40)). If all the
explicitly-appearing k, in (30)-(33) are set equal to one,
these equations result in the well-known characteristic
equations of LP modes (modes of weakly guiding fiber)
[22]; i.e.,

Ul(U) _ WKy(W)

HE LPp,, : = 35
m™ om JO(U) KO(W) ( )
ur(u) _ wki(w)
HE,, ,TE,,,TM,, >LP,,: ———*=
20 ° monU) k(W)
(36)
ur(u)y  wKiAW)
HE EH, ,, —-LP :—~ = . R
n+1,m, n—1l,m nm Jn(U) Kn(W)
n=2. (37)

All characteristic equations thus far shown were derived
assuming such electric fields as (17) and (18). If we use,
however, more general expressions like

C,cosnd
nEOJ u(h; ){D sin nf (38)
x C,sinnd
39
z {D cosné (39)

in (14) and (15), where the upper (lower) terms in (38) and
(39) go with each other, we can get the following rigorous
characteristic equation of circular dielectric waveguide [23]:

Q) . Ki(W) | [ HW) ., Ki(w)

{ u ) WK,<W)H () " WK,(W>}
_rp(wewr\
= k2( e ) 1=0,1,---. (40)

Fig. 3 shows dispersion curves of HE,, (LP,,) and HE,,
(LP,,) modes of the circular waveguide with x,=1.5. The
rigorous solutions according to (40) coincide with those
according to the approximate equation (30) as long as
compared on the graph, while they differ considerably
from those according to (35), LP mode approximation.
Another illustration of demonstrating high accuracy of
equation (30) is Fig. 4, in which relative errors of solutions
of (30) and (35) to the rigorous one are compared as a
function of k, for HE,; mode, using the parameter X,
where

[ —(B/k) h?

X=
R TE

(41)

x-—l
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Fig. 3. Dispersion curves of HE; and HE,, modes of step-index cir-
cular dielectric waveguide. ko = 1.5.
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Fig. 4. Comparison of relative errors of approximate propagation con-
stants for HE,; mode using the parameter X (=h2/(h?+ h2)).

kayxd—1=20.

The value of kayx}—1 is chosen as 2.0. Xyg, X;p, and
Xgj correspond to the solutions according, respectively, to
(30). (35), and (40). We see that the error of the solution of
(30) remains less than 1 percent up to the value k, near 1.6
for this example, whereas in case of the conventional LP
mode approximation, «, must be kept less than about 1.02
if the error should be limited within 1 percent.

V. RECTANGULAR DIELECTRIC WAVEGUIDE

For the purpose of obtaining solutions as exact as possi-
ble, the electric field expansions of (38) and (39) will be
well suited also for the rectangular waveguide. In this
section, however, we consider another approximation in
which the fact is used such that one of two orthogonal
components of transverse electric field dominates the other

2
AY K,=2.5
15 O o]
B
k ka
14+
4 £X
n
A\
af oM
) ¥
/ approximation
——— according to
1.2+ eq. {45)
approximation
—— according to
eq.(43)
11+ solution of egs.
------ (14) and (15)
(3 unknowns and
3 equations)
1.0 N
0 1 2 3 4 5 6

ka

Fig. 5. Dispersion curves of Efj (or E{;) mode of square dielectric
waveguide. k2 =2.5.

in the case of lower order modes of rectangular dielectric

waveguide; i.e., we use the approximation
E,=0 or E, =0. (42)

Then (14) and (15) are decoupled, resulting in

[ { AE,,,

0 (.2 _9_}
; _é—;l'_ Eix’ on’ (K I)El-x;COS(X ax’

'Kl(hepl)COSI(al—‘o)dv,: 120,1’25"' (43)

aEty’ , 0
fc{ on’ E;y dy’
K (h,p'ycosl(6'—0)dv'=0, [=0,1,2,---. (44)

If the explicitly appearing « are set equal to one in (43) and
(44), we finally obtain the equations corresponding to the
complete scalar (TEM) approximation or the potential
theory [6], which are

3E,. 3

}K,(hep’)cosl(ﬂ’—— 0)dv' =

1=0,1,2,--- (45)

ly _
an’ E’y' an’

9E,
{ }K,(hep’)cosl(ﬂ’—ﬂ)dv’z

)

[

[=0,1,2,--- (46)
(45) and (46) are the equations that lead to the characteris-
tic equations of LP modes ((35)-(37)), if applied to the
case of step-index circular dielectric waveguides [6].

Fig. 5 shows dispersion curves of the E{ (or E})) mode
[1], [9] of the square dielectric waveguide with k5 =2.5. The
dashed line is the solution of (45) using as E,, the form of
(38) with three expansion terms. (The result was checked to
be almost the same even if more than four terms were
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TABLE I
RELATION BETWEEN THE NUMBER OF EXPANSION AND THE VALUE
OF PROPAGATION CONSTANT OF Ej; MODE (ka =3.0)

NUMBER OF ’
9
EXPANSION ! ? > — ’ = =
_ GGG C, Cy Cg Co Cy Gy Cq Ty
COEFFICILENTS Co Co C2 Ca - - — =
C¢ Ca Gy Co Co Cg 1Cs G Cy Cy
B/k 1.4455| 1.4524 | 1.4540 1.4542 1.4542

used.) The solid line is the solution of (43) using as E,, the
only one term of

E, = CyJo(h,p). (47)

The dotted line is the solution of a pair of equations (14)
and (15) using as E, both the expansions (38) and (39) but
with only three lowest order terms. The reason why the
case of only three terms is drawn shall be made clear by
Table I in which a state of convergence of 8/k is shown as
the number of expansion increases; the case of dominant
mode and /za =3.0 is chosen. The B/k value using electric
field consisting of only three terms differs only about 0.12
percent from that using nine terms which could be consid-
ered to be rigorous. The solid line corresponds also to the
case of one term expansion of Table I. This example
suggests that the simple approximation using (43) together
with (47) (or (44) together with E,, = DyJy(h,p)) is quite
effective to the analysis of the dominant mode even if & is
considerably far from one. Comparison with the results of
other references treating rectangular waveguide was not
made so exactly, but the results of [1] and [7] seem to
almost agree with the solid or the dotted line.

VI. CONCLUSION

A quite general and useful method was presented for
analyzing guided modes of dielectric waveguides of arbi-
trary cross-sectional shape. Basic set of equations which
determines the propagation constants and transverse elec-
tric field components of modes was derived. This set could
be said to be a rigorous equations set, including the case of
inhomogeneous-core guides. It was shown by using the
examples of circular and rectangular dielectric waveguides
that very simple approximate forms for electric fields were
sufficient, if used in these rigorous equations, to lead to
highly accurate approximations for the propagation con-
stants.

APPENDIX

Elimination of magnetic fields from Maxwell’s equations
gives

aon 32E .
dvdn Qo P 'B an =(k*s*=p*)E, (A1)
L OE, 32Ev azEn (122 2
—]BW—— anz 3ndov '_(k K ﬁ )Ev (A2)
_OE, 32Ez 82E — K2%2E A3
jB an ’anz + a 2 + B av - K z* ( )

11

Differentiating (A1) by n and (A2) by v, and summing
them we have

62E
a 2

0°E,
on 2

) 2k2(aKE+ E)

—JB( 3 30

aE 3E
2.2
(k=) 2+

Combining (A3) and (A4), we get (8) of the text.

). (A4)
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Refraction at a Curved Dielectric Interface:
Geometrical Optics Solution
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Abstract —The transmission of a spherical or plane wave through an
arbitrarily curved dielectric interface is solved by the geometrical optics
theory. The transmitted field is proportional to the product of the conven-
tional FresnePs transmission coefficient and a divergence factor (DF),
which describes the cross-sectional variation (convergence or divergence)
of a ray pencil as the latter propagates in the transmitted region. The factor
DF depends on the incident wavefront, the curvatures of the interface, and
the relative indices of the two media. We give explicit matrix formulas for
cale-lating DF, illustrate its physical significance via examples.

I. INTRODUCTION

"IE REFRACTION at a dielectric interface is of
'undamental importance in clectromagnetic theory. If
the iaterface is arbitrarily curved, the only available solu-
tion is the one derived by the geometrical optics theory
(GO). Such a solution consists of two main ingredients: the
well-known Fresnel formulas for the transmission and re-
flection coefficients (due to A. J. Fresnel in 1823); and a
so-called “divergence factor (DF).” Surprisingly, the solu-
tion of DF was derived as early as 1915 by Gullstrand [1],
but its ap: lication was not widely recognized in the electro-
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magnetic /optical community until very recently. In 1972,
Deschamps (2], [3] rederived Gullstrand’s result by using
“curvature matrices” for describing curved surfaces /wave-
fronts, thus resulting in greater clarity and simpler compu-
tations. ; ‘

In this paper, we supplement Deschamps’ results by
giving explicit formulas for calculating various curvature
matrices and by illustrating the physical significance of DF
via analytical and numerical examples. Another motivation
for the present work is to compare our solution with the
one described by Snyder and Love [4] for the same prob-
lem. It is shown that these two solutions are not in agree-
ment.

II. FINAL SOLUTION FOR THE REFRACTED FIELDS

We begin with a statement of the problem. Two infinite
dielectric media with refraction indices n, and »n, are
separated by a curved interface £ (Fig. 1), which is de-
scribed by

2:iz=f(x,y). (2.1
The origin of the (x, y, z) coordinates is at the source point
0 in medium 1. The source emits a spherical wave, whose
electric field at an observation point r =(r, 8, ¢) is given by
[for exp(jw?) time convention]
—jkyr

E'(r)=5——[0P(0,6)+30(0.9)]  (22)
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