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A Method Extending the Boundary
Condition for Analyzing Guided Modes of

Dielectric Waveguides of Arbitrary
Cross-Sectional Shape

NAGAYOSHI MORITA, ~MBER, lEEE

A bstraci —A method based on the extended bonndary condition method

is presented for analyzing guided modes of dielectric wavegnides of arbi-

trary cross-sectional shape. Numerical integration needed in this method is

only over the boundary periphery line of the wavegnide. Nevertheless, it is

applicable to the waveguides with any refractive index difference between

core and cladding ranging from negligibly small to considerably large

difference, as well as to certain types of wavegnide with inhomogeneous

core. Approximate formulas for the case of weakly guiding are also

derivable from the general basic set of equations presented. Numerical

examples are given to verify the usefulness and accuracy of this method.

I. INTRODUCTION

w ITH THE increasing importance of the role of the

open waveguide as the optical to millimeter-wave or

microwave guiding structure, a variety of dielectric wave-

guides with circular and noncircular cross-sectional shapes

have appeared and been proposed. In order to investigate

the propagation characteristics of guided modes of those

waveguides, various types of analysis method have been

proposed and used. Typical methods of these are point-

matching [1 ]–[4], mode-matching [5], the method using

telegraphist’s equations [7], [8], and others [9], as applicable

to the homogeneous-core guides, and the method of mo-

ments [10], variational method [11 ]–[ 13], and finite-element

method [14], as applicable also to the inhomogeneous-core

guides. (The analyses peculiar to the radially inhomoge-

neous optical fiber are excluded here.)

All these methods, however, seem to have one or some of

drawbacks, such as: 1) inadequate in accuracy, particu-

larly, near cutoff; 2) only usable for some particular cross-

sectional shape; 3) only effective to the case of small

refractive index difference between core and cladding; 4)

require numerical integrations over a cross section; 5) need

to take a number of unknowns over a cross-sectional area,
etc.

This paper presents a quite general and efficient method

based on the extended boundary condition method [15],

[16]. This method does not only surmount the aforemen-

tioned drawbacks but also has the additional advantage

such that the fields in the exterior homogeneous region
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need not be used (at least directly) and pertinent ap-

proximations with very high accuracy can be derived

according to the usable conditions.

In order to demonstrate the usefulness and accuracy of

the present method, the inhomogeneous circular wave-

guide, the step-index circular waveguide, and the rectangu-

lar waveguide are treated with some typical numerical

examples for them.

II. GENERAL EQUATIONS

Consider the modes propagating in the z-direction with

the propagation constant ~. All electromagnetic fields of

modes are supposed to have the common factor exp ( jut –

j~z ) which is eliminated throughout the paper.

Since the problem of guided modes of a dielectric wave-

guide has the analogical property with the problem of

scattering of the obliquely incident wave by the same

dielectric cylinder as the waveguide, we could start from

the integral representation of field provided for such

scattering problems. Thus, by replacing cos ~ with – ~/k

in the first equation of [17, eq. (27)] and using (3) of the

same reference, we obtain the following electric field

expression in the exterior region:

1++{(in’x~).(vj+~Biz)}(Vj +jPiz)+e~o’

(1)

where

v,=v–izi3/Elz

+,=~o(~,~)

h,.{~- (2)

and where k is the wavenumber of the exterior region of

the waveguide, and R is the distance between the observa-

tion point and the integration point projected on a z-

constant plane. In the derivation of (1), the relation

(3)H$2J(– jz)=(j2/r)KO(z)

is used. Other notations and definitions are as follows (see

Fig. 1): i.e., C denotes the boundary line between interior
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Fig. 1. Cross section of dielectric waveguide and coordinate systems.

(G) and exterior (~) regions in a cross section; n and v are

the coordinates normal to C and along C, respectively, at a

point on C; ia is a unit vector directed along the a-direc-

tion, where a stands for some coordinates; a is the angle

~etween i. and ix; and W is the wave impedance in region

G. The prime refers to the derivative with respect to the

total argument of the indicated function when used on

functions, or otherwise refers to the coordinate of the

integration point, and the subscript e represents the exte-

rior region.

Using the identity

ix = in! cos d — iu, sin at (4)

the x-component of (1) becomes

Eex=–p J{21r ~
kHzsina’+~cosa’~– jsina’~&

(
– jcosa’~&–~ Hz& – j~HO,

)

(

a

)1
aj q, do’.“ cosa’— —sina’—

an’
(5)

Note that only tangential components appear in the in-

tegrand. Thus, we can replace, using boundary conditions,

all fields E=, Hz, EO, and HO by the interior fields El=, Hi=,

E,O, and Hz”, respectively, where the subscript i represents

the interior region. From Maxwell’s equations, we get

( aqn
Hi= = ~ aEzO

kw an L3v )

aH,z> K’
— + j/ih7,v, = jkj#,n,

ad

(6)

(7)

where K is the refractive index in G relative to that in ~.

Removing magnetic fields from (5) by use of integration by

parts, together with (6) and (7), and then removing Ei, by

use of the equation (see Appendix)

2 aK aK

)

aE,n aE,o
jBEi.=;(~Ei. +~Eio + an + av (8)

(5) reduces to

/[
Eex – 1 aEZX’

1
— – E,Xt$ $= dv’

2T ~ h’

J[ (
+* (K2–l)Ein, cosa’~–sinci~

c )

2—
(

,n,~ + ELO,~ ) ] ye dv’—cos a’ E
K

(9)
. . --r J

J[ aq
+ & (K2 – l)(EjX,cosa’+ E,Y, sina’)~

c

2

( )1;:+E,y<$ $, dv’.— ;COS a’ E, X/T (lo)

Following the similar steps, the expression for Eey reduces

to

J[~ey – 1 a’%’
1

—---+e– Eiy!~ do’
27T , an’

J[ a+
+ ~ (~2–l)(E,X, cosa’+EtY,sina’)@

c

(

_~5ina, E aK )1,x.=+ELy,~ ye dv’.
K

(11)

Equations (10) and (11) are the integral expressions of E,X

and Eey for the case where the observation point is in the

exterior region (P c @. On the other hand, if the observa-

tion point is placed in the interior region (PG G), both

expressions become zero due to the extended boundary

condition, which means

the right-hand sides of ( 10) and (11)= O, PEG.

(12)

Next, use is made in (12) of the addition theorem of the

modified Bessel function

+.= i m(~em(~ep)cosl( e’-e), p<p’

[=0

(13)

where c,= 2 unless 1= O, in which case c,= 1. Finally, we

have the following two basic equations:

/{(~ -Ej.+)-(K2-I)(Ezxcosa’
c

+ E,Y, sin a’)& + ~cos a’(EIX, & + Eiy, &)}

.K,(hep’)cosl(& -O)do’=O, 1=0,1,2, 0.. (14)

aE,y<

J{( an
— – E1y/&)–(K2 – l)(E1x, cosa’t

c

a 2.
/&+ Ejy/&)}

+ ‘v’ ‘ins’)~ + Z ‘lna’(EZX ax’

.K,(h,p’)cosl(& -6)do’=0, 1=0,1,2,. ‘. (15)

which determine the propagation constants ~ and the

transverse field distributions EiX and Eiy of guided modes.

All other interior field components can be determined from

EiX and Eiy, and the electric fields of the exterior region

could be obtained from (10) and (11).

Use of the principle of (12) and the identity (13) is the
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essential procedure of the extended boundary condition (or

null-field, or T-matrix) method [16]. Equations (14) and

(15) are not necessarily correct analytically, because of the

use of (13); for example, they may not work for a guicle

with an eccentric cross-sectional shape far different frolm

circle, like strongly concave. However, as long as we treat

the “ordinary” dielectric waveguides and we can use the

pertinent expressions for E,X and E,y, (14) and (15) coulld

be considered to be the exact equations. Note that (14) and

(15) are applicable to the waveguides with the inhomoge-

neous core region as well as with the arbitrary cros:s-

sectional shape.

III. INHOMOGENEOUS CIRCULAR WAVEGUIDE

As a first example, let us consider a circular waveguicle

whose refractive index distribution is given as

K2=K;{l– h(~)}, p<a

=1, p>a. (16)

It seems not so easy to get the exact field distributions in

the inhomogeneous region p <a. Fortunately, however, an

approximation is available for the case of weak inhc}-

mogeneit y; according to this approximation, the electric

fields of HE and EH modes in p < a are neatly expressed

as [ 17]–[20]

even HE.~:

E~~=A$ilt”-’J(p) {iXcos(n -l)& -iYsin(n-l)fl}

odd HE~~ :

E~~=AQt”-lJ(p){ iXsin(n -l) f3+iYcos(n-l)f?}

even EH.~:

Enm =Ai2tn+1)(p){ixcos(n +l)d+iysin(n+l)d}

odd EH.~:

Enm=AQ(”+l)(p){ iXsin(n +l)d-i,cos(n +1)0}

(17)

(18)

where the terms even and odd mean the symmetrical

property with respect to the x-axis, and n 21 in general;

but the case of n = O is special in that even EHO~ tends to

TMO~ and odd EHO~ to TEO~. The integer n used here

should not be confused with the coordinate n normal to a

point on C. A simple solution of Q(”)(p) in (17) and (18)

will be a solution of the differential equation

[dp, PdP { p,}]
‘+1<+ k2K;(x–h(p))–i ~(n)(p) =()

(19)

with

X=l–~2/k2K:. (20)

A method of solving (19) for general h(p) is, for example,

described in [19].

The characteristic equations for HE~~ and EH~~ modes

can be derived by substituting electric fields (17) and (18)

into (14) or (15). Both even and odd cases result in the

same equations except for the case n = O, from which case

TE and-TM modes ~esult

HE.~:

[

~(n-l)’(~) K22+1 ~ ~;-I(~eP)

Q(n-l)(p) ‘Z-1(~.P)

+n—l_#Ll)++*

1
=0,

p=a.

[

m’(p) _ ~ ~;(~eP)
TEO~ :

1
=0

L@(p) ‘~l(~eP) ,==

[

Q(’)’(p) _ K,h ~;(~eP)
TMO. :

m(p) ‘~l(~eP)

n>l

(21)

n>l

(22)

(23)

K2 ‘1,2~K—— 1 =0. (24)
a K ap ~=a

These approximate characteristic equations can present

solutions with almost the same level of accuracy as of [19],

in spite of their far simpler forms. Furthermore, it is quite

interesting to notice that the characteristic equations (21)–

(24) are just the same equations as those of [21] in which a

different approach is employed.

Next, we shall proceed to a simple numerical example,

Fig. 2 shows some of the dispersion curves obtained using

(21)-(24) for the case of quadratical inhomogeneity given

for

h(p)= d(p/a)2 (25)

in which case the solution of (19) can be written as

where

s;= a/(kKOfi) (27)

and L:)(. ) is the Laguerre function. One of the abscissas V

is the normalized frequency ka~m. Examples for

three different values of d are shown in which the case

d = O corresponds to a step-index fiber, while the case

d =0.015 corresponds to a fiber with smaller refractive

index in the core region near cladding than that in the
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Fig. 2. Dispersion curves of quadratically inhomogeneous circular di-

electric waveguide. ICO= 1.01.

cladding. We can notice at a glance the marked effect of d

on widening the single-mode frequency region. Differences

among HEZ1, TEOI, and TMO, modes cannot be dis-

criminated on this graph. It is checked that each curve

perfectly agrees with that of the corresponding mode ob-

tained from the characteristic equation of [19].

Although the results of this section may not be neces-

sarily new, the equations given in this section shall be

found soon to be connected to and useful for the discus-

sions of the following sections.

IV. STEP-INDEX CIRCULAR WAVEGUIDE

In the case of the step-index circular waveguide, i.e.,

h(p) = O, the solution of(19) reduces to

W“)(p)=qhip) (28)

where A is a constant and

Then, the characteristic equations corresponding to (21)-

(24) become

HEn~ :
u~~-l(u) K;+l.—
.ln_*(u) 2

. w-l(w) + n–l

Kn_*(w’)
~(K; -l)=o, .>1 (30)

EH~M :
UJ~+l(U) K:+l

——

Jn+l(U) 2

m;+,(w) n+l 2

~n+l(~)

‘~(Ko-l)=o, n>l (31)

TEO~ :
UJO(U) + WKO(FV) GO

J,(U) K,(W)
(32)

and

TMOW :
UJO(U) + WKO(W) no

K; J1(U) K,(W)
‘(33)

where

U=h,a W= h,a. (34)

It will be worth mentioning that (32) and (33) are just the

rigorous characteristic equations of TEO~ mode and TMO~,

mode, respectively (the case of 1= O in (40)). If all the

explicitly-appearing KO in (30)–(33) are set equal to one,

these equations result in the well-known characteristic

equations of LP modes (modes of weakly guiding fiber)

[22]; i.e.,

H&m+ Lpom:
UJ:(U) _ WK~(W)

JO(U) – KO(W)

HE2~,TEO~,TMO~ + LP1~ :
UJ{(U) _ WK;(W)

J,(U) – K,(W)

(35)

(36)

HE
UJ~(U) _ WK~(W)

n+l,m,BHn-l,m+LPnm: J.(U) – K.(W) ‘

n22. (37)

All characteristic equations thus far shown were derived

assuming such electric fields as (17) and (18). If we use,
however, more general expressions like

(38)
{

Cncos n6
EiX = 5 J.(hip) D Sinn(j

~=() n

{

Cn sin n13
Eiy= ~ ‘.(h,p) ~cosnd (39)

~ =() n

in (14) and (15), where the upper (lower) terms in (38) and

(39) go with each other, we can get the following rigorous

characteristic equation of circular dielectric waveguide [23]:

{

K;J~(@ + K;(W) 1{J;(U) > K;(W)

U.J/(u) WK,(W) Ui(U) WK1(W) }

‘W2T’)2‘=01 ’40)
Fig. 3 shows dispersion curves of HE, ~ (LPO1) and HE12

(LP02) modes of the circular waveguide with K,= 1.5. The

rigorous solutions according to (40) coincide with those

according to the approximate equation (30) as long as

compared on the graph, while they differ considerably

from those according to (35), LP mode approximation.

Another illustration of demonstrating high accuracy of

equation (30) is Fig. 4, in which relative errors of solutions

of (30) and (35) to the rigorous one are compared as a

function of KO for HE,, mode, using the parameter X,

where

(41)
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ka@=2.O.

The value of ka~~ is chosen as 2.0. XHE, XLP, and

XRI correspond to the solutions according, respectively, to

(30), (35), and (40). We see that the error of the solution of

(30) remains less than 1 percent up to the value KO near 1.6

for this example, whereas in case of the conventional LP

mode approximation, K. must be kept less than about 1.02

if the error should be limited within 1 percent.

V. RECTANGULAR DIELECTRIC WAVEGUIDE

For the purpose of obtaining solutions as exact as possi-

ble, the electric field expansions of (38) and (39) will be

well suited also for the rectangular waveguide. In this

section, however, we consider another approximation in

which the fact is used such that one of two orthogonal

components of transverse electric field dominates the other

;“5
1.4

1.3

1.2

1.1

1.0,

approximation

--– according to

approximation

— according to
/’

/
solution of eqs.

I
------- (14) and (15)

/ (3 unknowns and

I 3 equations)

12345
ka

Fig. 5. Dispersion curves of E~l (or- E{, ) mode of square dielectric
waveguide. x ~ =2, 5.

in the case of lower order modes of rectangular dielectric

waveguide; i.e., we use the approximation

E,X=O or E,y =0. (42)

Then (14) and (15) are decoupled, resulting in

J{i3E,X,
—–EiX, ~–(K2–l)EiX, COSa’&

. tin’ )

.~,(~ep~)cosl(e’ –d)do’=o> 1=0,1,2, . . . (43)

J{aE,yt
— – Eiy,& –(~2–l)EIY, sina’~

. b’ ay 1
.Kl(fiep’)cosl( e’-e)dtr’=o, 1=0,1,2, . . . . (44)

If the explicitly appearing K are set equal to one in (43) and

(44), we finally obtain the equations corresponding to the

complete scalar (TEM) approximation or the potential

theory [6], which are

/{

i3E,Xr

1
— –E,X,; Kl(h,p’)cosz(#- d)drY=O,

. an’

1=0,1,2, . . . (45)

1=0,1,2, . . . (46)

(45) and (46) are the equations that lead to the characteris-

tic equations of LP modes ((35)–(37)), if applied to the

case of step-index circular dielectric waveguides [6].

Fig. 5 shows dispersion curves of the Efl (or Efl ) mode

[1], [9] of the square dielectric waveguide with ~~ =2.5. The

dashed line is the solution of (45) using as E,X the form of

(38) with three expansion terms. (The result was checked to

be almost the same even if more than four terms were
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TABLE I
RSLATION BETWEEN THE NUMBER OF EXPANSION AND THE VALUE

OF PROPAGATION CONSTANT OF ~~1 MODE (ka =3.0)

! I , 1 I 1 1

used.) The solid line is the solution of (43) using as E,X the

only one term of

(47)

The dotted line is the solution of a pair of equations (14)

and (15) using as Ei both the expansions (38) and (39) but

with only three lowest order terms. The reason why the

case of only three terms is drawn shall be made clear by

Table I in which a state of convergence of ~/k is shown as

the number of expansion increases; the case of dominant

mode and I:a =3.0 is chosen. The j3/k value using electric

field consisting of only three terms differs only about 0.12

percent from that using nine terms which could be consid-

ered to be rigorous. The solid line corresponds also to the

case of one term expansion of Table I. This example

suggests that the simple approximation using (43) together

with (47) (or (44) together with E,y = ~0 Jo( h, p )) is quite

effective to the analysis of the dominant mode even if K. is

considerably far from one. Comparison with the results of

other references treating rectangular waveguide was not

made so exactly, but the results of [1] and [7] seem to

almost agree with the solid or the dotted line.

VI. CONCLUSION ‘

A quite general and useful method was presented for

analyzing guided modes of dielectric waveguides of arbi-

trary cross-sectional shape. Basic set of equations which

determines the propagation constants and transverse elec-

tric field components of modes was derived. This set could

be said to be a rigorous equations set, including the case of

inhomogeneous-core guides. It was shown by using the

examples of circular and rectangular dielectric waveguides

that very simple approximate forms for electric fields were

sufficient, if used in these rigorous equations, to lead to

highly accurate approximations for the propagation con-

stants.

APPENDIX

Elimination of magnetic fields from Maxwell’s equations

gives

?’J% aEz _i32E0

i3vi3n av=
@~-(k2K2-~2)E. (Al)

3EZ 82E0
– jb ~U—— — +S=(k2K2-~2)Eo (A2)

iln2

aEx + f2Ez + i32E=
j~~

—+j~~. - k2K2Ez. (A3)
an= av2

11

Differentiating (Al) by n and (A2) by o, and summing

them we have

-,B(~+~)=,k=.(*En+*E”)

(8E 3E

)
+(k2K2–~2) &+& . (A4)

Combining (A3) and (A4), we get (8) of the text.
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Refraction at a Curved Dielectric Interface:
Geometrical Optics Solution

SHUNG-WU LEE, FELLOW, IEEE, MYSORE S. SHESHADRI, VAHRAZ JAMNEJAD, MEMBER, IEEE, AND
RAJ MITTRA, FELLOW, IEEE

A bstruct —The transmission of a spherical or plane wave through an

arbitrarily curved dielectric interface is solved by tbe geometrical optics

theory. The transmitted field is proportional to the product of the conven-

tional Fresnel’s transmission coefficient and a divergence factor (DF),

which describes the cross-sectional variation (convergence or divergence)

of a ray pencil as the latter propagates in the transmitted region. The factor

DF depends on the incident wavefront, the curvatures of the interface, and

the relative indices of the two media. We give expficit matrix fornnrfas for

calr-~lating DF, illustrate its physical significance via examples.

I. INTRODUCTION

‘~ “ iE REFRACTION at a dielectric interface is of

., undamental importance in electromagnetic theory. If

th. ,derface is arbitrarily curved, the only available solu-

tion is the one derived by the geometrical optics theory

(GO). Such a solution consists of two main ingredients: the

well-known Fresnel formulas for the transmission and re-

flection coefficients (due to A. J. Fresnel in 1823); and a

so-called “divergence factor (DF).” Surprisingly, the solu-

tion of DF was derived as early as 1915 by Gullstrand [1],

but its ap lication was not widely recognized in the electro-
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magnetic/optical community until very recently. In 1972,

Deschamps [2], [3] rederived Gullstrand’s result by using

“curvature matrices” for describing curved surfaces/wave-

fronts, thus resulting in greater clarity and simpler compu-

tations.

In this paper, we supplement Deschamps’ results by

giving explicit formulas for calculating various curvature

matrices and by illustrating the physical significance of DF

via analytical and numerical examples. Another motivation

for the present work is to compare our solution with the

one described by Snyder and Love [4] for the same prob-

lem. It is shown that these two solutions are not in agree-

ment.

11. FINAL SOLUTION FOR THE REFRACTED FIELDS

We begin with a statement of the problem. Two infinite

dielectric media with refraction indices n ~ and n ~ are

separated by a curved interface Z (Fig. 1), which is de-

scribed by

Z:.z=f(x, y). (2.1)

The origin of the (x, y, z) coordinates is at the source point

O in medium 1. The source emits a spherical wave, whose

electric field at an observation point r =( r, 8, @s)is given by

[for exp(j~l) time convention]

~i(r)– e-~’r
[6P(d,@+~Q(ff,c#I)] (2.2)
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